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INTRODUCTION

A fundamental problem in plasma theory is the question of the existence

of MHD equilibria. Given some initial configuration of the field and

plasma, and given that the system can evolve only via ideal HHD, one

asks whether the system can reach a static equilibrium state. This

question obviously has great relevance to fusion devices; hence, it has

received considerable attention for closed magnetic configurations (e.g.

Moffatt 1985). There is reason to believe that the question of

equilibria may also be very important to the study of the solar corona.

Parker (198Sa,b), in particular, has argued that the underlying cause

for coronal heating is the lack of well-behaved ,mgnetic equilibria. As

a result of photospheric motions the coronal magnetic field must be

distorted into a complex three-dimensional pattern. Parker argues that

such a complex field topology can have no well-behaved equilibria in

general. He further argues that the effect of this lack of well-behaved

equilibria is ro lead to the formation of current sheets. Since the

corona is not perfectly ideal, the current sheets will dissipate

rapidly, thereby heating the corona.

These arguments have some support from the recent _ork on equilibria in

closed field geometries. Moffatt (1985) has shown that for topologically

complex geometries, the magnetic field will evolve towards equilibrium

configurations that, in general, have discontinui:ies, specifically

current sheets. This occurs even for an evolution _hat is completely

ideal, in which case the field for all finite times must be

well-behaved. Moffatt's point is that the equilib:ium state will be

achieved only at infinite time so that discontinuities can, and usually

will be created. Since this evolution is basically the one hypothesised

by Parker in his coronal heating model, Moffatt's results are clearly

strong support for the central points of this model. However, there is a

critical difference between the types of topology considered by Moffatt

and the corona. The coronal field lines are not closed; from the

viewpoint of coronal equilibria the lines can be considered to term/nate

at the photospheric boundary. Therefore, one has to include the boundary

conditions imposed by the photospheric motions on the possible evolution

of the field. So far this has not been done, consequently Moffatt's

results by themselves do not definitively settle the question of whether

the solar coronal field has well-behaved equilibria in general.

Recently, Parker (1986) has presented a new proof for non-equilibrium

based on topological arguments. This proof is limited to force-free
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fields; however, this is not a significant restriction since force-free

fields are believed to be a good approximation to the coronal field.

They have been widely used in the past (e.g.Sturrock and Woodbury 1967;

Barnes and Sturrock 1972; Sakural 1979; Aly 1984; Yang, Sturrock and

Antiochos 1986). Parker first argues that the coronal force-free field

can generally be expressed in terms of two scalar functions. Although

this is not true for arbitrarily complex field, it should be valid for

the case where the field begins in some simple state and then evolves by

ideal, finite motions. We make the same restriction in this work and

consider only fields that can be described by two well-behaved Euler

potentials (e.g. Stern 1966). Next, Parker points out that if the

positions of the fleld-llne footpoints at the photospheric boundary is

fixed, then the pattern of wrappings and windings of the field lines in

the corona imposes constraints on the possible evolution, and hence on

the possible equilibria of the field. These constraints are due to the

topology of the coronal field, which in turn is due to the history of

the photospheric footpoint motions. In order for the field to be in

equilibrium the two potentials must satisfy the two independent

force-free equations as well as all the topological constraints.

However, Parker argues that since the pattern of coronal wrappings and

windings is arbitrary, one of the potentials is essentially fixed

throughout by the topological constraints. This leaves only one free

function to satisfy the two force equations; hence, the problem is

overdetermined and no well-behaved solutions exist in the general case.

It is evident from these arguments and also from Moffatt's work that the

issue of topological constraints is of crucial importance for the

problem of the existence of equilibria. In this paper we will show that,

countrary to Parker's claim, the topological constraints do not

overdetermlne the force-free problem. The source of the discrepancy

between his results and ours is that we find that the topological

constraints do not fix the value of one of the potentials in the corona.

We show below that all the constraints are incorporated in the positions

of the footpoints at the photospheric boundary, %_ich fixes only the

boundary values of the potentials. Since the force-free problem is

naturally a Dirichlet-type boundary value problem, there is no reason to

expect it to be overdeterm/ned on the basis of these constraints.

Our result that the footpoint positions include all the topological

constraints may appear counter-intuitlve. If one considers the field as

a collection of strings, then for a particular set of positions of the

strings' footpoints, the strings should be able to wrap around each

other in an infinite number of distinct patterns. Hence, the topology of

the strings is clearly not determ/ned solely by their footpolnt

positions. However, there is a key difference between the magnetic lines

and a collection of strings. The field lines that we are considering

must have a smooth and continuous distribution throughout the corona and

on the boundary. Furthermore, all field lines must be connected to the

photosphere. It is these requirements, that the field be smooth and

well-connected throughout, that forces a one-to-one relationship between

the footpoint positions and the coronal wrapping pattern.
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CORONAL WRAPPING PATTERN

In this section we will show how the wrapping of any two field lines

about each other can be determined from the footpoint positions, which

is commonly referred to as the "connectivity". The discussion in this

short contribution will necessarily be somewhat heuristic; a more

rigorous and thorouEh demonstration of this result is given in Antiochos
(1986).

First let us reemphasize that we are considering only those fields that

can be written in terms of two well-behaved Eulerpotentials,

This form is very convenient for expressing the connectivity. Note that

and _ are constant along each field line and, hence, label each line.

The footpoint positions is given simply by the value of < and_ at the
photospheric boundary.

I

I

t

Figure 1. Illustration of curves used to determine the wrapping of field

llne C a about C I . Coronal field lines are indicated by solid lines,

curves lying on the photospheric boundary (here shown as a plane) are

indicated by broken lines. The area aI enclosed by field line C I and the

boundary curve C b is shaded.
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Now consider any two field lines such as those illustrated in Figure I.

The coronal field lines are labelled as C I and C A . It seems intuitively

obvious from the Figure that field line C_wraps once around C I . We can

make this wrapping concept rigorous by connecting the two footpoints of

C I on the photospheric boundary by a straight line, labelled C& , and
.ab

then considering the area a n enclosed by the closed curve consisting of

C, and C 6 . We define the value of the wrapping of C l about C, to be

given by sum of the number of times that C_ intersects area a,, with

each intersection assigned a value of +i or -i depending on the

direction of the intersection. The wrapping of Cz about C I has a value

of -I for the lines in the Figure i.

Given the values of the potentials _ and _ throughout the corona, we

can calculate the exact positions of the field lines and consequently

the wrapping. However, the field llne positions obviously contain a

great deal more information than is required to determine the wrapping.

We will now show that the values of _ and _ solely on the photospheric

boundary are sufficient to fix the wrapping. The two different field

lines C A and C, have a different value for at least one of the Euler

potentials; assume that it is _ so that _, _ _ . Consider the

surface _ = 4a . If the connectivity is well-behaved everywhere in the

corona and on the photosphere, we expect the Euler potentials to define

a set of simple, well-behaved surfaces in this domain. The intersections

of these surfaces with the photospheric boundary define the contours of

constant _ or constant p on the photosphere. In order to have a

well-defined connectivity each contour of constant _ must intersect

each _ contour at exactly two points on the photosphere; consequently,

we expect that each contour consists of a single closed curve. For

example, the boundary contour for _ = _z is shown in Figure 1 as the

closed curve C_ . Note that it can be considered to consist of two

parts, each of which connects the two foopoints of field line C_ . Now

the key point is that field line C A lies completely on the surface

= _ , while field llne C I nowhere intersects this surface. This

implies that with no change in the wrapping, we are free to deform C x

down along the constant 6< surface until it Just coincides with one of

the parts of curve C, . Since both C_ and C_ lie on the photospheric

boundary the number of times that this deformed curve crosses area a,

must equal the number of times that either part of C_ crosses C& . But

this number depends only on the straight line Cb that connects the

footpoints of C I and the contour of constant _ on the boundary;

therefore the wrapping can be determined solely by the values of _ and

on the boundary.

We conclude that for a given set of footpoint positions the wrapping

pattern in the corona is completely fixed. Contrary to the assumption

implicit in Parker's arguments, one is not free to arbitrarily prescribe

a wrapping pattern. Note that the wrapping pattern does not include all

the possible topological features of the field (e.g. Berger 1986)_

however, by extending the arguments above it can be shown (Antiochos

1986) that all the topological features created by the footpoint motions
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of well-behaved fields can be determined from the connectivity. Hence,

the topological constraints are included in the boundary conditions on

the Euler potentials and impose no additional restrictions on possible

equilibria. Although this does not prove that equilibria always exist,

it does show that the force-free problem is not overdetermined and that

the existence of equilibria is still an open question.
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